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Absence of bulk electroconvective instability in concentration polarization
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The problem of bulk electroconvective stability of quiescent electric conduction from an electrolyte solution
into a charge-selective solilon-exchange membranéas been revised. It is shown through a numerical
solution of the linear stability problem that previously reported bulk electroconvective instability does not
exist. This numerical result is supported by the short wave asymptotic analysis. Our comprehensive study
confirms the result of an earlier, less detailed, report by Buchanan and Saville.
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[. INTRODUCTION a tangential electric field upon the extended space charge of
o ) ) the nonequilibrium double laygd9]. Both types of electro-
The term electroconvection is being used in at least fougonvection could arise either in a thresholdless manner, due
different contexts. Thus, by this term one often refers to thao inhomogeneity of the solid/liquid interfadenechanical,
electric-field-induced flow of nematic liquid crystdl$—3].  such as roughness, or elecrior with a threshold, through
In addition, by the same term one relates to the flow of liquidinstability of quiescent electric conduction through a solution
dielectrics caused by the action of electric field on the spactayer near a uniform flat charge-selectiygerm-selective
charge of ions of the appropriate sign injected in a low quansolid, such as an electrode or ion exchange membrane. Pas-
tity into the fluid[4—6]. This term is also being applied to the sage of a dc current through such a layer causes the forma-
effects of an electric fields acting on the surface charge adion of electrolyte concentration gradients—concentration
cumulated at the interface between two weakly conductingpolarization(CP) in electrochemical terminology.
fluids. Namely, this has been studied by Taylor, who in the Bulk electroconvective instability was first reported by
mid-1960s introduced the leaky dielectric model to explainGrigin [20]. In his paper, Grigin used the lowest-order Galer-
the behavior of droplets deformed by a steady field. Thiin approximation to study the critical perturbation mode for

model, later extensively used by MelcH&i, formed an im- unrealistic boundary _condition$20,2]]. Grigin’s papers
portant step in the construction of a unified treatment of elec?/e'® followed by an independent study by Bruinsma and
trohydrodynamics of liquid dielectrids]. Alexander in which they investigated the bulk electroconvec-

- ive instability in a very thin polarization cell of finite width,
As opposed to the aforementioned systems, from here Oh)r galvanos){atic con>(ljitior[2p3]. Below, we show that in

we refer by the term electroconvection to the flow of SONYiems of concentration polarization in a flat layer, this setup

electrolytes at moderate c_oncentration, .that s, o liquid mounts to consideration of a short wave perturbation mode.
albundant W'th. cha;]ge csrrlers_ of Eo:jh SIgns. Th'f YPe Olrhe authors concluded that bulk electroconvective instability
electroconvection has been nvoked, in particular, as a;q exist, but, based on heuristic energy balance arguments,

me_chanlsmh crumall for gyelrllr_nmng cbond;ctgncedthrough they argued that it could hardly develop into a major mixing
cation-exchange electrodialysis membraf@d0] and im- - Sic on a macroscopic scale.

portant for ramified electrodepositiddl-13 and layering Following Ref. [20], a numerical study of linear bulk

of ;:_c;\llo:cd ”cry§tals on eletétrodef smIJrfac[em,lﬂ. L electroconvective instability in an electrolyte layer flanked
e following two modes of electroconvection in strong by cation-selective surfaces has been carried out for galvano-

electrolytes may be distinguished. The first is the relatlvelyStatic and potentiostatic conditions in Ref@4—26. The
recently invoked "bulk” electroconvection, due to the vol- o,n 0 sion of these studies was that instability did exist.
ume glectrlc forces acting on a macroscopic s_cale in a locally To gain physical understanding of this instability, a simple
quasielectroneutral electrolyte. The second is the COMMOR, o del of electroconvection in a loop was suggesiad]
electro-osmosis, either of the classical “first” kind or of the 1 o steady-state version of this one-dimensional fuIIy.non-
second” kind, according to the terminology of DukRib6]. linear model admits an explicit analytic solution which pre-

I Elelf:tro-os:n_ossf of thﬁ first klnc; rﬁlates to thel ellectr(_)- dicts branching of electroconvective steady states from a qui-
yte slip resulting from the action of the tangential electric og.ant conductive one above a certain current threshold.

field upon the space charge of a quasiequiLibrium dif.fusfl'hus, both the numerical and analytical studies, including
electric double layer. Electro-osmosis of the “second kind"y,q «thin cell” linear stability analysis by Bruinsma and Al-

invoked by Dukhin[16—18 pertains to the similar action of exanderf23] and the loop model, predicted the existence of
bulk electroconvective instability.
On the other hand, in the numerical study by Buchanan
*Corresponding author. and Saville[27], no evidence of this instability was found.
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Thus, so far, there was no ultimate clarity as to the exis- Fo
tence of the bulk electroconvective instability. This lends a =BT (8)
particular importance to the study of Bruinsma and Alex-
ander, as containing the only analytical result suggesting thare the dimensionless concentrations of cations and anions
existence of bulk electroconvective instabiliijesides the and the electric potentialdimensional variables being
less direct indication by the loop mod@4]). Unfortunately, —marked with tildeg andc, is the typical electrolyte concen-
the linear stability analysis of Bruinsma and Alexanfi2®] tration (e.g., the average concentration in the layEris the
employed fewer boundary conditioff@ur) than was the or- Faraday constanR is the universal gas constant, ahds the
der of the basic equation of the modsixth), which led the  absolute temperature. Furthermore,
authors to fix arbitrarily certain integration constants in the

solution of the relevant spectral problem. This rendered V= v =u,d +0,j ok, 9
questionable the conclusion of these authors concerning the Vo

occurrence of instability. On the other hand, the unique po-

sition of this study as the only direct analytical evidence of _ E (10)
bulk electroconvective instability motivates our current at- P= Po

tempt to carry out a systematic short-wave linear stability . i i i

analysis complementing that of Bruinsma and Alexander. are the dimensionless velocity vectdold notations hereon
Our paper is organized as follows. In Sec. I, we formu_mark_vector$ and the pressure, re;;pectlvely, with the typical

late the basic model of bulk electroconvection in a solutionV€loCity vo and pressure, determined from the force bal-

layer flanked by two cation-selective ion exchange mem®&nce in the dimensional version of the momentum equation

branes. In Secs. Il and 1V, we derive the relevant spectra(4) as

problem and carry out the short-wave asymptotic linear sta- d(RT/F)?

bility analysis. In Sec. V, the asymptotic boundary layer so- Vo=, (11
LT . . : 4yl

lution is compared with the exact one obtained numerically,

and we present the numerical results of the linear stability

analysis for the intermediate wave number range obtained by Po = o (12)

a numerical method differed from that used in R¢®st,24. L’

The main conclusion attained is that of the nonexistence of hered is the dielectric constant angl the dynamic viscos-
bulk electroconvective instability. ity of the solution.

Finally,
Il. EQUATIONS OF BULK ELECTROCONVECTION D
+
12

t:TL (13

Let us consider a domain in a univalent electrolyte char-
acterized by a typical single length scélewhich is macro-
scopic but still sufficiently small for all inertia effects of flui
motion to be negligible. With a natural scaling, the dimen
sionless equations for convective electrodiffusion of ions, to
gether with the Stokes equations and the incompressibilit¥
condition, read u

d is the dimensionless time ard, is the cation diffusivity.
_The dimensionless spatial coordinates in E(9—5) are
normalized bylL.

Equations(1) and (2) are those of convective electrodif-
sion of cations and anions, respectively. Equat®ris the
Poisson equation for the electric potential, with-c* on the
CT+PEV- V)C =V (Vch+¢V o), (1)  right-hand sid¢RHS) being the space charge due to the lack
of local balance of ionic concentrations. The Stokes equation
(4) is obtained from the full momentum equations by omit-

¢ +Pev-V)c'=DV - (Ve -c Vo), (2)  ting the inertia terms. Finally5) is the continuity equation
for an incompressible solution.
g?Ap=c -c', (3) The dimensionless parameters in the syst&s(5) are as
follows.
C Vp+AgVe+Av=0, @) (i) The dimensionless Debye length defined as
r
e= (—d) (14)
V.v=0. (5) L
Here, Here
( dRT )1’2
~4 r,= 15
C+ - (;_, (6) d 4'77C0F2 ( )
0 is the dimensional Debye length.
. For a realistic macroscopic electrolyte systgrh0*
o= c 7 <L (cm)<101], [10°°5<cy(mol eni®) <10°%], €2 is a very
Co small number in the range
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02X 102 <2< 2x107°. (16) - Vp+AeVe+Av=0 (28)
(ii) The Peclet number, defined as and the continuity equation

L V-v=0 29

pe =ik an (29
D. form the final set describing macroscopic bulk electro-
or, using Eq.(11), convection in the local stoichiometric electroneutrality

approximation.
RT\?> d
Pe=| — . (18)
F /) 479D, ll. LINEAR STABILITY OF QUIESCENT

. . CONCENTRATION POLARIZATION
As mentioned in Ref[1], Pe does not depend ag,L and

for a typical aqueous low molecular electrolyte is of order In this section, we address the issue of electroconvective
unity, more precisely instability for concentration polarization in a layer of a uni-
valent electrolyte, flanked by two ideally cation-perm-
Pe~0.5. (19 selective surfaceg.g., cation-selective electrodialysis mem-
(iii) Finally, the relative anionic diffusivity is defined as braneg, under a specified electric currerfa system
equivalent to that considered by Bruinsma and Alexander
_D- 20 23
D,’ The relevant set of time-dependent versions of EQs.

25)—(29) reads
whereD, and D_ are the dimensional cationic and anionic (2929

D

diffusivities, respectively. For realistic aqueous electrolyte 1
solutions,D may vary by two orders of magnitude in the ~Vp+ApVe+Av= St (30)
range
Jc
The extreme smallness ef motivates the commonly em-
ployed approximation of local “stoichiometric” electroneu-
trality, which amounts to setting=0 in Eq.(3), yielding (1-D)Ac+(1+D)V(cV¢)=0, (32
def
ct=c=c¢ (22) V.-v=0. (33

everywhere in the bulk of electrolyte, except for the bound-Here Sc3,/D is the Schmidt numbefy is the kinematic
ary (electric doublglayers of thickness. Note that although  viscosity).

the space charge is very smairdere?) in the Poisson equa- In order to specify the boundary conditions, let us define a
tion (3), it is sufficient to generate an electroconvective flow Cartesian coordinate system with thaxis directed from the
with Peclet number of order unity through the force term inleft membrane to the right one. Thus, the electrolyte layer

the Stokes equatio®). occupies the domain
Summarizing, the dimensionless equations for steady-
state convective electrodiffusion in the local electroneutrality 2 ={0<x<l-w<y<o-w<z<o}

approximation are . . . "
PP The simplest version of galvanostatic boundary conditions

Pev:-V)c=V - (Vc+cV o), (23 reads
0= 0= =0, 34
Pgv-V)c=DV -(Vc-cV o). (24) Uabe0™ Uyleo = Udieo (39
By adding Eq.(23) to Eq. (24), divided byD, we arrive at Uxlxe1= Uylxe1 = vaye1 =0, (35)
the equation
PG(V .V )C =D*Ac. (25) (Cx + C‘Px)|x:1 = (Cx + C‘Px)|x:0 =-1=const, (36)
Here, (Cx - C‘Px)|x:l = (Cx - C(Px)|x:0 =0, (37)
._ 2D )
D=1 (26) U, Pys P2 CysCoy @y, 0, — O Wheny? + 22 — o, (38)
Furthermore, by subtracting E(R4) from Eq. (23), we ob-
tain f (c—-1)dxdydz= 0. (39
)
1-D)Ac+(1+D)V -(cV ¢)=0. 27
( Jac+( ) Ve @7 Equationg34) and(35) are standard nonslip conditions at
Equations(25) and (27) together with Stokes equation the solid boundaries. The current conditi(86) specifies a
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constant electric current densitghrough the membranghe

expression in parentheses stands, with a minus sign, for the

component of the dimensionless cationic flu€onditions

(37) state the impermeability of these boundaries for anions
(the expression in parentheses stands, with a minus sign, for

thex component of the dimensionless anionic jlukquation

(38) is a standard boundedness condition at infinity.
Finally, the normalization conditiof89) specified the to-

tal amount of anions in the laydper unit area of mem-

tration with flux conditiong(36) and(37).

The steady-state version of the boundary value proble
(30)—(39) possesses a trivial quiescent conductioancen-
tration polarization solution,

(1
co(x)—1+§<§—x), (40)
(x)—ln[1+|—(}—x)] (41)
P = 2\2 !
Vo=0, (42
Po(X) = <p0x +const. (43)
Expression41) yields the current-voltage relation
1-¢V
I = 4m, (44)
where
def
V=y(0) = ¢o' (1) (45)

is the voltage across the solution. _
From Eqgs.(44) and (45), whenV—o, | —1'"M=4 and,
simultaneously, by Eq40), co(1)—0. This is the key fea-

ture of the classical picture of the concentration polarization,
namely saturation of the current density toward the limiting
value with the increasing voltage, resulting from the vanish-

ing interface electrolyte concentration at the cathode.

To formulate the linear stability problem for the solution
(40—43), we assume an infinitesimal flow which creates
small three-dimensional fluctuations, p’, ¢’ in the concen-

tration, pressure and electrostatic potential. Let us consider a

perturbation of the conduction solutigf0)—(43) of the form

M=Mo+ M. (46)
Here,
Co(X) c'(x,y,2)
_ (PO(X) _ QDI(Xay! Z) t
MO_ VOEO ’ Ml_ V/(X,y,Z) e)\ ’ (47)
Po(X) p'(X,y,2)

whencev’ =v,i+vj +v kK is the velocity perturbation vector.

Substitution of M into the boundary value problem
(30—(39), foIIowed by linearization, yields a spectral prob-
lem for a(c’,¢’,v’,p’) and\ with the equations

brang. This condition is necessary for uniqueness of concen\-N'th D
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A
AV’—Vp’+AQDOV(p’+AgoV(po=§:V’, (48)
dg 1
Ac' =Pa,—— +\C’, 49
Xdx D* (49
V.v =0 (50)

=2D/(1+D). Assuming exchange of stabilityh
=0), Eqgs.(48)—(50) yield the following set of equations for

nhe marginally stable mode:

AV = Vp' +A¢ Vo' +ApV =0, (51
dg 1

Ac' =P , 52

VX i D (52

V.-v' =0 (53)

Applying the operatorotrot to the linearized steady-state
Navier-Stokes equatio8) yields

( # P
(54)

A ’
a22>

Substitution of the steady-state version of E&l) into
Eq. (32) yields for D=1, assumed hereofthis is the case
most favorable for short-wave instabiljfy

dg
oX

A%, = -
Ox az2

5’3%00(

& &2)
e

1
A(p:—E(Vgo- Vo).

Linearization of this expression yield
(55

Thus, the final boundary value problem for marginally stable
fluctuation reads

- V(PO VC’_C,A(PO: V(P’ . VCO+COA(P,'

dc
Ac' =Pa,—, 56
X i (56)
o # P AN
A%y, =~ O( 2t )A‘P +_30 2 ¢,
X o S \ay? a7
(57)
- VCPO VC,_C,A(POZ V(,D, VCO+COA§D, (58)

with the following boundary conditions resulting from Eqgs.

(34)—(39).

x=0 (left membrane is the anofje

(9 !
1 =0 (59
X x=0
—1/2 P
( ¢ +(1+ |/4)i> =0, (60)
1+1/4 % | o
Ux|x=O: 0, (61)
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ov
Kxxzo =0. (62)
x=1 (right membrane is the cathoxle

& !
1 <o, (63)
IX | x=1

— /2 /

( +(1- |/4 ) =0, (64)

1 - I/ 07X x=1
vX|X_ =0, (65)
% =0. (66)
IX | x=1

The basic question we address is whether the boundary value

problem (56)—66) possesses a nontrivial solution for some
value of the control parametér
Let us look for the functiong’,c’,v, in the form

¢’ = D()explilky +k2)), (67)
¢’ = é)explifky +kz]), (68)
vx = u(x)explifky +k.z]). (69)

Substitution of these expressions into systé&6)—(58)
yields, taking into account Eq$40) and (41),

_ P z)

Pel(dx2 k)& (70
d? 2)2_ 5 | <d2 2)
(dxzk u_k( | |)dx2kq)

201+--=x
4 2
|3
+ k2 T 3P, (72)
4(1+———x)
4 2
| 1\ 2) | d
(1+4 )(dx2 )P 2 ax
~ | d¢ |2
_< | I)dx+< | |>2§’ (72
2| 1+——-X 41+—--x
4 2
where
k=\IZ+ K, (73)
with the following boundary conditions.
x=0 (anode,
d
dé =0, (74
dx x=0
do
D a— 1+1/4)— =0, 75
( ”45 ( >dx) B (75)
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u|x:0: 0, (76)
du
d_x X:O—O. (77)
=1 (cathode,
agl
dx X:l— 0, (78)
do

(—|/4§ +(1- I/4)a> le_ 0, (79
U[=1=0, (80)
du
&x:l_ 0. (81)

IV. SHORT-WAVE ANALYSIS OF THE MARGINAL
LINEAR STABILITY PROBLEM

In this section, we analyze the proble(vi0)—(72) for
short-wave perturbatiok> 1. Let us introduce the small pa-
rameterw=k™1. For o<1, Eq.(72) is singularly perturbed
with two boundary layers at=0, 1.

In order to construct a boundary layer solution valid near
x=1, we define the inner variable

1-x

S=—
w

(82
while consideringl in the vicinity of the limiting valuel
=4, such that

| =~4-wlPa a,B=0(1). (83)
Substitution of expressior(82) and(83) into Eq.(72) yields

s’ P + a(d_z ~ 1)@ , 2d®
20°7F \dg o ds
B 4 dé 16
T oMPdset P + ) ds " 0?P(4sw* P + a)2§.

(84)

Equating powers o in the first terms on both sides of Eq.
(84) yields B=1/2. Thus Eq.(84) may be rewritten as

4s\w + a(d_2 ~ 1)@ , 2d®
20%% \d< 1) dS
4 d 16
-- o, (85
3/2(48\ w+a) dS w(4s\ w+a)?’
or, to the leading order iw,
d? ) 8 dé
—-1l|b=-—F—— 86
(dsz (4sVw + a)? ds (86)

By using expressiong2) and (83), Eq. (70) is rewritten to
the leading order inw as
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u__Z—D*(d_Z_l)g @7
Paw?(4 — aw@) ds’ ,

and Eq.(71) as

d? 2 4 d?
<@ - 1) u=- \";(48\"; +a) (@ - 1>CD' (88)

Substitution of Eqs(86) and (87) into Eqg. (88) yields the
following “short-wave” equation:

d2 3 df
g—l §=—,LL—.

ds (89

Here

_ 64Panw 90
H (45\“’; +a)¥

This equation is identical with the basic equation of the lin-

ear stability problem of Bruinsma and Alexand28]. In line
with their approach motivated by the smallnessof we

employ the WKB method, that is, we look for a nearly ex-

ponential solution of Eq89). Thus, we seek(s) in the form

&(s) = exgW(s)], (91

whereW(s) is nearly linear in the sense that

PHYSICAL REVIEW E 71, 011506(2005

2
(92

dew| _ ‘d_vv
ds ds
Substitution of Eq(91) into Eq.(89) yields, using Eq(92),

{(d_V\/)l} dw ©3)
ds TS
Let us look forW in the form
W=W,+ W, (94)
where
wi
W

when u— 0. Substitution of Eq(94) into Eq. (93) yields to
the leading order i

(95)

Furthermore, for the correctiow,;, we have to the leading

order
-1 s %;
W, = —ds’.
1 (exp(iiZw/S))JO 2 9°

Substitution of Eq.(96) into Eq. (91) yields for &(s) the
general solution

Wp= =£s.

(96)

—

&s)=Aexd-s-w(s)]+B exp{ [-s+ w(s)/2]co< %w(s)) } +C exp{ [-s+ w(s)/2]sin< L23w(s)> } +F exgds—-w(s)]

+G exp{ [s— w(s)/2]cos( ?w(s)) } +H exp[[s + w(s)/2]sin( L23w(s)> } .

Here

s3 35 —
Vi VPe ( 4S\’a))
—ds'=—In| 1+

2 2

0 o

(97)

&s)=Aexg-s—-w(s)]

+B exp[[— S+ W(s)/2]cos< %W(S)) }

+C exp{ [-s+ W(s)/2]sin( L23W(s)) } . (98

andA, B, C, F, G, andH are constants to be determined from Similarly, for the boundary layer nea=0 we introduce the
the boundary condition&4)—(81). Boundedness of the solu- inner variable

tion at the outer edge of the boundary layer—co with

w—0 for 1-x=0(1), however small implies vanishing to

the leading order inw of constantd, G, andH,

F=G=H=0.

Thus, a three-parameter boundary layer solutioréfer near

x=1is

r=—. (99)

w
In terms ofr, Egs.(70)—(72) yield to the leading order
)
——1] £é€=0.
dr? ¢

The three-parameter solution of H400 bounded at — o,
analogous to the “right” boundary layer soluti@®8), is

(100
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&r)=Me"+Nre™ +Prée™. (101 8
. _ d=> AD;, (112)
Boundary layer solution$98) and (101) together with the -1
“outer” solutioné=0 yield a composite general leading-order
solution of Eq.(89) in the form 8
&sr)=Aexd-s-w(s)] u= zAiu" (112
_ é of eight independentfundamental solutions of the eighth-
*B exp[[ s* w(s)/2]co< 2 W(s))} order systen{70)—<(72). HereA,, 1<i<8, are arbitrary con-
= stants to be determined from the boundary conditions
+Cexp{[—s+w(s)/2]sin(L3w(s)>} (74)—81). Theith fundamental solution satisfies the initial
2 conditions
+Me"+Nre" + Prie™. (102 dé
.. .. . . j = 01, (113)
Boundary conditions to be satisfied by this solution are con- dX | x=0
ditions (74)—(81) rewritten in terms of ands as follows.
—1Te=0 r=0(rm1 -1/2 dd,
x=1[s=0, r=0(w )], (_§i+(1+|/4)_.> s, (114
dé 1+1/4 dx / | o
s =0, (103
S Uilx=0= 83, (115
d? d
<d52 1>§_ 0. (109 d—' = 8.4, (116)
X x=0
d{ d? ) _
—|==-1)¢=0. 10 &ilx=0= 35, (117)
ds(d52 ¢ (109 o
x=0 [S:O((D_l), r:O], q)i|X:0: 5i61 (118)
dé dy;
—=0, 106 — =
ar (106 ae |~ (119
g2 ) d3Ui
——-1]£=0, 10 — = 8g, 120
(dl’z f ( 7) dX3 0 18 ( )
£<d_2_ 1>§_0 108 where o
dr\dr? e _J0i#]
Yo lai=j,i, j=1,...,8.

Substitution of Eq(102) into Eqgs.(103—(108) yields a set
of six homogeneous linear algebraic equations for constantSince the left-hand sides of the first four Eq$13—(116)
A, B, C, M, N, andP with vanishing of the system’s deter- match those of the boundary conditiof®&)—(77) at x=0,
minant as the nontrivial solvability condition. The determi- substitution of the solutiofil10—112) into boundary condi-

nant of this system is given by the following equality: tions (74)—(77) yields A;=0,i=1,...,4. Thus, it remains to
= 3 satisfy the boundary conditio4)—(77) at x=1, by a suit-
Det—384 P&3w (1+§ —,2pe — 4 2) able (nontrivial) choice of the remaining constanf§=0,
= 3 Vw 3 w\Vw 260 L . . . . .
« a « a i=5,...,8. This requires vanishing of thex4d determinant
+O(exp- 1/w)) (109 detA)=0, A=(g), i,j=5,...,8, (121

and is positive for alk. Thus, a nontrivial marginally stable whereA is a matrix with elements

short-wave solution does not exist. dé
_ Yg -
V. NUMERICAL SOLUTION OF THE FULL LINEAR &5= dx le’ 1=5,....8, (122
STABILITY PROBLEM
In this section, we seek a nontrivial marginally stable so- 6= (L’Zé + (1 _l_)@> . i=5 ....8,
lution of the problem(70)—(81) as a linear combination, 1-1/4 4) dx /|
8 (123
£=2 A&, (110 _
i=1 a7= Uy, 1=5,...,8, (124
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-1
1.0x10% |
3
-1.04
1.0x10°
2 -1.08
&s
1.0x10° | d M :
112+ //
;
1 7
1.0x10' | !
~~~~~~ -1.16 - J
== ’
-.\.\ ’”°
1.0x10° : : : : 1.2 ! ! . .
0 0.4 0.8 1.2 1.6 2 “o 2 4 6 8 10
s k
FIG. 1. Compal‘ison betWeen the numerical Solufmntinuous FIG. 3. Dependence Of the |argest eigenvalum'] k for differ_

line) and the short-wave asymptotic ofteashed lingin the bound-  ent currentd: continuous line)/1'=0.8; dashed linel/1'"M=0.9;
ary layer for different wave numbek: curve 1,k=3; curve 2,  gash-dot line)/1'"m=0.95.
k=5; curve 3,k=10.

problem(70)—(81) for any values ok, which in turn implies
the nonexistence of bulk electroconvective instability.
This conclusion is confirmed by our calculated depen-

. _ o dence of the largest eigenvalud growth rate in Eqs(47)]
Recall that the right-hand sides of E¢$22—129) coincide  on k, jllustrated in Fig. 3.

with the left-hand sides of boundary conditiof&)—(77),
respectively.
The problems(70—(72) and (113—120 have been V. CONCLUDING REMARKS
solved numerically for various values of parameters
PeD,a,k. In order to check the procedure, the numerically  Bulk electroconvective instability of quiescent concentra-
constructed fundamental solutidg was compared with the  tion polarization(steady-state conductipthrough a perm-
asymptotic boundary layer solutiof®8) near the singular selective solid(metal electrode, ion exchange membpane
endx=1, satisfying the initial conditions as provided by the does not exist(How this combines with the appearance of
rlurT]_ericaI solution at this point. This Comparison i”UStratedcircu|ation in the |Oop model remains unclear and possib|y
in Fig. 1. worth study in spite of the only vague relation between the
Finally, in Fig. 2 we note that the determinant @tis  two systemg.Moreover, as will be shown in our forthcom-
strictly negative and monotonically decreasing with the in-ing study[28], whenever instability does occur due to the
crease of currenittowards its limiting value 4. Thus, d®)  nonequilibrium space charge near the interfaoenequilib-
does not vanish for any finite value kf This, together with  rium electro-osmosjs taking into account the electric force
the short-wave asymptotic analysis of Sec. IV valid forterm in the quasielectroneutral bulk has a stabilizing effect.
k>1, implies the nonexistence of a nontrivial solution to In any case, all previous reports regarding the existence of
instability resulted from either analytical inaccuracies or nu-
1.0x10 merical artifacts. Thus, the corresponding conclusion of the
only previous analytical stud}23], in spite of its indisput-
able methodological value, was invalid due to lost boundary
conditions. In fact, our current study, in its analytical part, is
merely an orderly reproduction of the analysis by Bruinsma
and Alexander in terms of systematic matched asymptotic
expansions. Although it is difficult to assess the possible
source of error in the previous numerical studies by other
groups(we may only speculate that some numerical difficul-
ties might have been related to the stiffness of the ordinary

du

. i=5,....8. (125
dX | x=1

Qg =

1.0x10"

1.0x10°

-det(A)
1.0x10°

1.0x10° differential equations of the spectral probl¢b], and slow
convergence of the Galerkin expansions, besides the un-
1.0x10° ] . . . ‘ physical Dirichlet boundary conditions for the electric poten-

2 4 6 8 10 tial [20-22), we may confidently identify the source of error
in the previous numerical studies claiming instability by our
FIG. 2. Dependence of de¥) on k for three values of/I'"™  own group[24,26. This was rooted in too coarse finite dif-

=0.9 (continuous ling 0.99 (dashed ling and 0.999(dashed-dot ference grids we employe@niform grids with 100 to 200
line). grid points, near the limit of our computer capabilities at that
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time) undetected by insufficient tests. Our recent reproducing of the numerical solution through its comparison with the
tion of these computations with twice as fine a grid showedasymptotic one. In conclusion, we wish to reiterate that
the disappearance of the positive eigenvalue observed prevBuchanan and SavillE27] are to be fully credited for their
ously for currents sufficiently close to the limiting value. The just claim of the nonexistence of bulk electroconvective
particularity of our current report lies in the systematic test-instability.
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