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The problem of bulk electroconvective stability of quiescent electric conduction from an electrolyte solution
into a charge-selective solidsion-exchange membraned has been revised. It is shown through a numerical
solution of the linear stability problem that previously reported bulk electroconvective instability does not
exist. This numerical result is supported by the short wave asymptotic analysis. Our comprehensive study
confirms the result of an earlier, less detailed, report by Buchanan and Saville.
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I. INTRODUCTION

The term electroconvection is being used in at least four
different contexts. Thus, by this term one often refers to the
electric-field-induced flow of nematic liquid crystalsf1–3g.
In addition, by the same term one relates to the flow of liquid
dielectrics caused by the action of electric field on the space
charge of ions of the appropriate sign injected in a low quan-
tity into the fluidf4–6g. This term is also being applied to the
effects of an electric fields acting on the surface charge ac-
cumulated at the interface between two weakly conducting
fluids. Namely, this has been studied by Taylor, who in the
mid-1960s introduced the leaky dielectric model to explain
the behavior of droplets deformed by a steady field. This
model, later extensively used by Melcherf7g, formed an im-
portant step in the construction of a unified treatment of elec-
trohydrodynamics of liquid dielectricsf8g.

As opposed to the aforementioned systems, from here on
we refer by the term electroconvection to the flow of strong
electrolytes at moderate concentration, that is, to liquids
abundant with charge carriers of both signs. This type of
electroconvection has been invoked, in particular, as a
mechanism crucial for “overlimiting” conductance through
cation-exchange electrodialysis membranesf9,10g and im-
portant for ramified electrodepositionf11–13g and layering
of colloid crystals on electrode surfacesf14,15g.

The following two modes of electroconvection in strong
electrolytes may be distinguished. The first is the relatively
recently invoked “bulk” electroconvection, due to the vol-
ume electric forces acting on a macroscopic scale in a locally
quasielectroneutral electrolyte. The second is the common
electro-osmosis, either of the classical “first” kind or of the
“second” kind, according to the terminology of Dukhinf16g.

Electro-osmosis of the “first” kind relates to the electro-
lyte slip resulting from the action of the tangential electric
field upon the space charge of a quasiequilibrium diffuse
electric double layer. Electro-osmosis of the “second kind”
invoked by Dukhinf16–18g pertains to the similar action of

a tangential electric field upon the extended space charge of
the nonequilibrium double layerf19g. Both types of electro-
convection could arise either in a thresholdless manner, due
to inhomogeneity of the solid/liquid interfacesmechanical,
such as roughness, or electricd, or with a threshold, through
instability of quiescent electric conduction through a solution
layer near a uniform flat charge-selectivesperm-selectived
solid, such as an electrode or ion exchange membrane. Pas-
sage of a dc current through such a layer causes the forma-
tion of electrolyte concentration gradients—concentration
polarizationsCPd in electrochemical terminology.

Bulk electroconvective instability was first reported by
Grigin f20g. In his paper, Grigin used the lowest-order Galer-
kin approximation to study the critical perturbation mode for
unrealistic boundary conditionsf20,21g. Grigin’s papers
were followed by an independent study by Bruinsma and
Alexander in which they investigated the bulk electroconvec-
tive instability in a very thin polarization cell of finite width,
for galvanostatic conditionf23g. Below, we show that in
terms of concentration polarization in a flat layer, this setup
amounts to consideration of a short wave perturbation mode.
The authors concluded that bulk electroconvective instability
did exist, but, based on heuristic energy balance arguments,
they argued that it could hardly develop into a major mixing
mechanism on a macroscopic scale.

Following Ref. f20g, a numerical study of linear bulk
electroconvective instability in an electrolyte layer flanked
by cation-selective surfaces has been carried out for galvano-
static and potentiostatic conditions in Refs.f24–26g. The
conclusion of these studies was that instability did exist.

To gain physical understanding of this instability, a simple
model of electroconvection in a loop was suggestedf24g.
The steady-state version of this one-dimensional fully non-
linear model admits an explicit analytic solution which pre-
dicts branching of electroconvective steady states from a qui-
escent conductive one above a certain current threshold.
Thus, both the numerical and analytical studies, including
the “thin cell” linear stability analysis by Bruinsma and Al-
exanderf23g and the loop model, predicted the existence of
bulk electroconvective instability.

On the other hand, in the numerical study by Buchanan
and Savillef27g, no evidence of this instability was found.*Corresponding author.
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Thus, so far, there was no ultimate clarity as to the exis-
tence of the bulk electroconvective instability. This lends a
particular importance to the study of Bruinsma and Alex-
ander, as containing the only analytical result suggesting the
existence of bulk electroconvective instabilitysbesides the
less direct indication by the loop modelf24gd. Unfortunately,
the linear stability analysis of Bruinsma and Alexanderf23g
employed fewer boundary conditionssfourd than was the or-
der of the basic equation of the modelssixthd, which led the
authors to fix arbitrarily certain integration constants in the
solution of the relevant spectral problem. This rendered
questionable the conclusion of these authors concerning the
occurrence of instability. On the other hand, the unique po-
sition of this study as the only direct analytical evidence of
bulk electroconvective instability motivates our current at-
tempt to carry out a systematic short-wave linear stability
analysis complementing that of Bruinsma and Alexander.

Our paper is organized as follows. In Sec. II, we formu-
late the basic model of bulk electroconvection in a solution
layer flanked by two cation-selective ion exchange mem-
branes. In Secs. III and IV, we derive the relevant spectral
problem and carry out the short-wave asymptotic linear sta-
bility analysis. In Sec. V, the asymptotic boundary layer so-
lution is compared with the exact one obtained numerically,
and we present the numerical results of the linear stability
analysis for the intermediate wave number range obtained by
a numerical method differed from that used in Refs.f24,26g.
The main conclusion attained is that of the nonexistence of
bulk electroconvective instability.

II. EQUATIONS OF BULK ELECTROCONVECTION

Let us consider a domain in a univalent electrolyte char-
acterized by a typical single length scaleL, which is macro-
scopic but still sufficiently small for all inertia effects of fluid
motion to be negligible. With a natural scaling, the dimen-
sionless equations for convective electrodiffusion of ions, to-
gether with the Stokes equations and the incompressibility
condition, read

ct
+ + Pesv · = dc+ = = · s=c+ + c+ = wd, s1d

ct
− + Pesv · = dc− = D = · s=c− − c− = wd, s2d

«2Dw = c− − c+, s3d

− = p + Dw = w + Dv = 0, s4d

= ·v = 0. s5d

Here,

c+ =
c̃+

c0
, s6d

c− =
c̃−

c0
, s7d

w =
Fw̃

RT
s8d

are the dimensionless concentrations of cations and anions
and the electric potentialsdimensional variables being
marked with tildesd, andc0 is the typical electrolyte concen-
tration se.g., the average concentration in the layerd, F is the
Faraday constant,R is the universal gas constant, andT is the
absolute temperature. Furthermore,

v =
ṽ

v0
= vxi + vyj + vzk , s9d

p =
p̃

p0
s10d

are the dimensionless velocity vectorsbold notations hereon
mark vectorsd and the pressure, respectively, with the typical
velocity v0 and pressurep0 determined from the force bal-
ance in the dimensional version of the momentum equation
s4d as

v0 =
dsRT/Fd2

4phL
, s11d

p0 =
hv0

L
, s12d

whered is the dielectric constant andh the dynamic viscos-
ity of the solution.

Finally,

t = t̃
D+

L2 s13d

is the dimensionless time andD+ is the cation diffusivity.
The dimensionless spatial coordinates in Eqs.s1d–s5d are
normalized byL.

Equationss1d and s2d are those of convective electrodif-
fusion of cations and anions, respectively. Equations3d is the
Poisson equation for the electric potential, withc−−c+ on the
right-hand sidesRHSd being the space charge due to the lack
of local balance of ionic concentrations. The Stokes equation
s4d is obtained from the full momentum equations by omit-
ting the inertia terms. Finally,s5d is the continuity equation
for an incompressible solution.

The dimensionless parameters in the systems1d–s5d are as
follows.

sid The dimensionless Debye length«, defined as

« = S rd

L
D . s14d

Here

rd = S dRT

4pC0F
2D1/2

s15d

is the dimensional Debye length.
For a realistic macroscopic electrolyte systemf10−4

,L scmd,10−1g, f10−5,c0smol cm−3d,10−3g, «2 is a very
small number in the range
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0.23 10−12, «2 , 2 3 10−5. s16d

sii d The Peclet number, defined as

Pe =
v0L

D+
, s17d

or, using Eq.s11d,

Pe =SRT

F
D2 d

4phD+
. s18d

As mentioned in Ref.f1g, Pe does not depend onc0,L and
for a typical aqueous low molecular electrolyte is of order
unity, more precisely

Pe< 0.5. s19d

siii d Finally, the relative anionic diffusivity is defined as

D =
D−

D+
, s20d

whereD+ and D− are the dimensional cationic and anionic
diffusivities, respectively. For realistic aqueous electrolyte
solutions,D may vary by two orders of magnitude in the
range

0.1, D , 10. s21d

The extreme smallness of«2 motivates the commonly em-
ployed approximation of local “stoichiometric” electroneu-
trality, which amounts to setting«=0 in Eq. s3d, yielding

c+ = c− =
def

c s22d
everywhere in the bulk of electrolyte, except for the bound-
ary selectric doubled layers of thickness«. Note that although
the space charge is very smallsorder«2d in the Poisson equa-
tion s3d, it is sufficient to generate an electroconvective flow
with Peclet number of order unity through the force term in
the Stokes equations4d.

Summarizing, the dimensionless equations for steady-
state convective electrodiffusion in the local electroneutrality
approximation are

Pesv · = dc = = · s=c + c = wd, s23d

Pesv · = dc = D = · s=c − c = wd. s24d

By adding Eq.s23d to Eq. s24d, divided byD, we arrive at
the equation

Pesv · = dc = D!Dc. s25d

Here,

D! =
2D

1 + D
. s26d

Furthermore, by subtracting Eq.s24d from Eq. s23d, we ob-
tain

s1 − DdDc + s1 + Dd = · sc = wd = 0. s27d

Equationss25d and s27d together with Stokes equation

− = p + Dw = w + Dv = 0 s28d

and the continuity equation

= ·v = 0 s29d

form the final set describing macroscopic bulk electro-
convection in the local stoichiometric electroneutrality
approximation.

III. LINEAR STABILITY OF QUIESCENT
CONCENTRATION POLARIZATION

In this section, we address the issue of electroconvective
instability for concentration polarization in a layer of a uni-
valent electrolyte, flanked by two ideally cation-perm-
selective surfacesse.g., cation-selective electrodialysis mem-
branesd, under a specified electric currentsa system
equivalent to that considered by Bruinsma and Alexander
f23gd.

The relevant set of time-dependent versions of Eqs.
s25d–s29d reads

− = p + Dw = w + Dv =
1

Sc
vt, s30d

]c

]t
+ Pesv · = dc = D!Dc, s31d

s1 − DdDc + s1 + Dd = sc = wd = 0, s32d

= ·v = 0. s33d

Here Sc=nk/D is the Schmidt numbersnk is the kinematic
viscosityd.

In order to specify the boundary conditions, let us define a
Cartesian coordinate system with thex̂ axis directed from the
left membrane to the right one. Thus, the electrolyte layer
occupies the domain

o = h0 , x , 1,−` , y , `,− ` , z, `j.

The simplest version of galvanostatic boundary conditions
reads

uvxux=0 = uvyux=0 = uvzux=0 = 0, s34d

uvxux=1 = uvyux=1 = uvzux=1 = 0, s35d

uscx + cwxdux=1 = uscx + cwxdux=0 = − I = const, s36d

uscx − cwxdux=1 = uscx − cwxdux=0 = 0, s37d

v,py,pz,cy,cz,wy,wz → 0 wheny2 + z2 → `, s38d

E
S

sc − 1ddxdydz= 0. s39d

Equationss34d ands35d are standard nonslip conditions at
the solid boundaries. The current conditions36d specifies a
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constant electric current densityI through the membranesthe
expression in parentheses stands, with a minus sign, for thex
component of the dimensionless cationic fluxd. Conditions
s37d state the impermeability of these boundaries for anions
sthe expression in parentheses stands, with a minus sign, for
thex component of the dimensionless anionic fluxd. Equation
s38d is a standard boundedness condition at infinity.

Finally, the normalization conditions39d specified the to-
tal amount of anions in the layersper unit area of mem-
braned. This condition is necessary for uniqueness of concen-
tration with flux conditionss36d and s37d.

The steady-state version of the boundary value problem
s30d–s39d possesses a trivial quiescent conductionsconcen-
tration polarizationd solution,

c0sxd = 1 +
I

2
S1

2
− xD , s40d

w0sxd = lnF1 +
I

2
S1

2
− xDG , s41d

v0 ; 0, s42d

p0sxd =
1

2
w0x

2 + const. s43d

Expressions41d yields the current-voltage relation

I = 4
1 − e−V

1 + e−V , s44d

where

V=
def

w0s0d − w08s1d s45d

is the voltage across the solution.
From Eqs.s44d and s45d, when V→`, I → I lim =4 and,

simultaneously, by Eq.s40d, c0s1d→0. This is the key fea-
ture of the classical picture of the concentration polarization,
namely saturation of the current density toward the limiting
value with the increasing voltage, resulting from the vanish-
ing interface electrolyte concentration at the cathode.

To formulate the linear stability problem for the solution
s40d–s43d, we assume an infinitesimal flowv8 which creates
small three-dimensional fluctuationsc8 ,p8 ,w8 in the concen-
tration, pressure and electrostatic potential. Let us consider a
perturbation of the conduction solutions40d–s43d of the form

MI = MI 0 + MI 1. s46d

Here,

MI 0 =1
c0sxd
w0sxd
v0 ; 0

p0sxd
2, MI 1 =1

c8sx,y,zd
w8sx,y,zd
v8sx,y,zd
p8sx,y,zd

2elt, s47d

whencev8=vxi +vyj +vzk is the velocity perturbation vector.
Substitution of MI into the boundary value problem

s30d–s39d, followed by linearization, yields a spectral prob-
lem for a sc8 ,w8 ,vI8 ,p8d andl with the equations

Dv8 − = p8 + Dw0 = w8 + Dw = w0 =
l

Sc
v8, s48d

Dc8 = Pevx
dc0

dx

1

D! + lc8, s49d

= ·v8 = 0 s50d

with D!=2D / s1+Dd. Assuming exchange of stabilitysl
=0d, Eqs.s48d–s50d yield the following set of equations for
the marginally stable mode:

Dv8 − = p8 + Dw0 = w8 + Dw = w0 = 0, s51d

Dc8 = Pevx
dc0

dx

1

D! , s52d

= ·v8 = 0. s53d

Applying the operatorrotrot to the linearized steady-state
Navier-Stokes equations48d yields

D2vx = −
]w0

]x
S ]2

]y2 +
]2

]z2DDw8 +
]3w0

]x3 S ]2

]y2 +
]2

]z2Dw8.

s54d

Substitution of the steady-state version of Eq.s31d into
Eq. s32d yields for D=1, assumed hereonsthis is the case
most favorable for short-wave instabilityd,

Dw = −
1

c
s=w · = cd.

Linearization of this expression yield

− = w0 · = c8 − c8Dw0 = = w8 · = c0 + c0Dw8. s55d

Thus, the final boundary value problem for marginally stable
fluctuation reads

Dc8 = Pevx
dc0

dx
, s56d

D2vx = −
]w0

]x
S ]2

]y2 +
]2

]z2DDw8 +
]3w0

]x3 S ]2

]y2 +
]2

]z2Dw8,

s57d

− = w0 · = c8 − c8Dw0 = = w8 · = c0 + c0Dw8 s58d

with the following boundary conditions resulting from Eqs.
s34d–s39d.

x=0 sleft membrane is the anoded,

U ]c8

]x
U

x=0
= 0, s59d

US − I/2

1 + I/4
c8 + s1 + I/4d

]w8

]x
DU

x=0
= 0, s60d

uvxux=0 = 0, s61d

LERMAN, RUBINSTEIN, AND ZALTZMAN PHYSICAL REVIEW E 71, 011506s2005d

011506-4



u
]vx

]x x=0 = 0. s62d

x=1 sright membrane is the cathoded,

U ]c8

]x
U

x=1
= 0, s63d

US − I/2

1 − I/4
c8 + s1 − I/4d

]w8

]x
DU

x=1
= 0, s64d

uvxux=1 = 0, s65d

U ]vx

]x
U

x=1
= 0. s66d

The basic question we address is whether the boundary value
problem s56d–s66d possesses a nontrivial solution for some
value of the control parameterI.

Let us look for the functionsw8 ,c8 ,vx in the form

w8 = Fsxdexpsifkyy + kzzgd, s67d

c8 = jsxdexpsifkyy + kzzgd, s68d

vx = usxdexpsifkyy + kzzgd. s69d

Substitution of these expressions into systems56d–s58d
yields, taking into account Eqs.s40d and s41d,

u = −
2D!

PeI
S d2

dx2 − k2Dj, s70d

S d2

dx2 − k2D2

u = − k2 I

2S1 +
I

4
−

I

2
xDS

d2

dx2 − k2DF

+ k2 I3

4S1 +
I

4
−

I

2
xD3F, s71d

S1 +
I

4
−

I

2
xDS d2

dx2 − k2DF −
I

2

dF

dx

=
I

2S1 +
I

4
−

I

2
xD

dj

dx
+

I2

4S1 +
I

4
−

I

2
xD2j, s72d

where

k = Îky
2 + kz

2, s73d

with the following boundary conditions.
x=0 sanoded,

Udj

dx
U

x=0
= 0, s74d

US − I/2

1 + I/4
j + s1 + I/4d

dF

dx
DU

x=0
= 0, s75d

uuux=0 = 0, s76d

Udu

dx
U

x=0
= 0. s77d

x=1 scathoded,

Udj

dx
U

x=1
= 0, s78d

US − I/2

1 − I/4
j + s1 − I/4d

dF

dx
DU

x=1
= 0, s79d

uuux=1 = 0, s80d

u
du

dxx=1 = 0. s81d

IV. SHORT-WAVE ANALYSIS OF THE MARGINAL
LINEAR STABILITY PROBLEM

In this section, we analyze the problems70d–s72d for
short-wave perturbationk@1. Let us introduce the small pa-
rameterv=k−1. For v!1, Eq. s72d is singularly perturbed
with two boundary layers atx=0,1.

In order to construct a boundary layer solution valid near
x=1, we define the inner variable

s=
1 − x

v
s82d

while consideringI in the vicinity of the limiting valueI
=4, such that

I < 4 − vba a,b = Os1d. s83d

Substitution of expressionss82d ands83d into Eq.s72d yields

4sv1−b + a

2v2−b S d2

ds2 − 1DF +
2

v

dF

ds

= −
4

v1+bs4sv1−b + ad
dj

ds
+

16

v2bs4sv1−b + ad2j.

s84d

Equating powers ofv in the first terms on both sides of Eq.
s84d yields b=1/2. Thus Eq.s84d may be rewritten as

4sÎv + a

2v3/2 S d2

ds2 − 1DF +
2

v

dF

ds

= −
4

v3/2s4sÎv + ad
dj

ds
+

16

vs4sÎv + ad2
j, s85d

or, to the leading order inv,

S d2

ds2 − 1DF = −
8

s4sÎv + ad2

dj

ds
. s86d

By using expressionss82d and s83d, Eq. s70d is rewritten to
the leading order inv as
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u = −
2D!

Pev2s4 − aÎvd
S d2

ds2 − 1Dj, s87d

and Eq.s71d as

S d2

ds2 − 1D2

u = −
4

Îvs4sÎv + ad
S d2

ds2 − 1DF. s88d

Substitution of Eqs.s86d and s87d into Eq. s88d yields the
following “short-wave” equation:

S d2

ds2 − 1D3

j = − m
dj

ds
. s89d

Here

m =
64 PevÎv

s4sÎv + ad3
. s90d

This equation is identical with the basic equation of the lin-
ear stability problem of Bruinsma and Alexanderf23g. In line
with their approach motivated by the smallness ofm, we
employ the WKB method, that is, we look for a nearly ex-
ponential solution of Eq.s89d. Thus, we seekjssd in the form

jssd = expfWssdg, s91d

whereWssd is nearly linear in the sense that

Ud2W

ds2 U ! UdW

ds
U2

. s92d

Substitution of Eq.s91d into Eq. s89d yields, using Eq.s92d,

FSdW

ds
D2

− 1G2

= − m
dW

ds
. s93d

Let us look forW in the form

W= W0 + W1, s94d

where

uW1u
uW0u

→ 0,

whenm→0. Substitution of Eq.s94d into Eq. s93d yields to
the leading order inm

W0 = ± s. s95d

Furthermore, for the correctionW1, we have to the leading
order

W1 = S − 1

exps± i2p/3d
DE

0

s Î3 m

2
ds8. s96d

Substitution of Eq.s96d into Eq. s91d yields for jssd the
general solution

jssd = A expf− s− wssdg + B expFf− s+ wssd/2gcosSÎ3

2
wssdDG + C expFf− s+ wssd/2gsinSÎ3

2
wssdDG + F expfs− wssdg

+ G expFfs− wssd/2gcosSÎ3

2
wssdDG + H expFfs+ wssd/2gsinSÎ3

2
wssdDG . s97d

Here

wssd =E
0

s Î3 m

2
ds8 =

Î3 Pe

2
lnS1 +

4sÎv

a
D

andA, B, C, F, G, andH are constants to be determined from
the boundary conditionss74d–s81d. Boundedness of the solu-
tion at the outer edge of the boundary layerfs→` with
v→0 for 1−x=Os1d, however smallg implies vanishing to
the leading order inv of constantsF, G, andH,

F = G = H = 0.

Thus, a three-parameter boundary layer solution forjssd near
x=1 is

jssd = A expf− s− wssdg

+ B expFf− s+ wssd/2gcosSÎ3

2
wssdDG

+ C expFf− s+ wssd/2gsinSÎ3

2
wssdDG . s98d

Similarly, for the boundary layer nearx=0 we introduce the
inner variable

r =
x

v
. s99d

In terms ofr, Eqs.s70d–s72d yield to the leading order

S d2

dr2 − 1D3

j = 0. s100d

The three-parameter solution of Eq.s100d bounded atr →`,
analogous to the “right” boundary layer solutions98d, is
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jsrd = Me−r + Nre−r + Pr2e−r . s101d

Boundary layer solutionss98d and s101d together with the
“outer” solutionj=0 yield a composite general leading-order
solution of Eq.s89d in the form

jss,rd = A expf− s− wssdg

+ B expFf− s+ wssd/2gcosSÎ3

2
wssdDG

+ C expFf− s+ wssd/2gsinSÎ3

2
wssdDG

+ Me−r + Nre−r + Pr2e−r . s102d

Boundary conditions to be satisfied by this solution are con-
ditions s74d–s81d rewritten in terms ofr ands as follows.

x=1 fs=0, r =Osv−1dg,

dj

ds
= 0, s103d

S d2

ds2 − 1Dj = 0, s104d

d

ds
S d2

ds2 − 1Dj = 0. s105d

x=0 fs=Osv−1d , r =0g,

dj

dr
= 0, s106d

S d2

dr2 − 1Dj = 0, s107d

d

dr
S d2

dr2 − 1Dj = 0. s108d

Substitution of Eq.s102d into Eqs.s103d–s108d yields a set
of six homogeneous linear algebraic equations for constants
A, B, C, M, N, andP with vanishing of the system’s deter-
minant as the nontrivial solvability condition. The determi-
nant of this system is given by the following equality:

Det =
384 PeÎ3v3/2

a3 S1 +
6

a
Îv +

2 Pe

a3 vÎv +
4

a2v2D
+ O„exps− 1/vd… s109d

and is positive for allv. Thus, a nontrivial marginally stable
short-wave solution does not exist.

V. NUMERICAL SOLUTION OF THE FULL LINEAR
STABILITY PROBLEM

In this section, we seek a nontrivial marginally stable so-
lution of the problems70d–s81d as a linear combination,

j = o
i=1

8

Aiji , s110d

F = o
i=1

8

AiFi , s111d

u = o
i=1

8

Aiui , s112d

of eight independentsfundamentald solutions of the eighth-
order systems70d–s72d. HereAi, 1ø i ø8, are arbitrary con-
stants to be determined from the boundary conditions
s74d–s81d. The ith fundamental solution satisfies the initial
conditions

Udji

dx
U

x=0
= di1, s113d

US − I/2

1 + I/4
ji + s1 + I/4d

dFi

dx
DU

x=0
= di2, s114d

uuiux=0 = di3, s115d

Udui

dx
U

x=0
= di4, s116d

ujiux=0 = di5, s117d

uFiux=0 = di6, s118d

Ud2ui

dx2 U
x=0

= di7, s119d

Ud3ui

dx3 U
x=0

= di8, s120d

where

di j = H0,i Þ j

1,i = j , i, j = 1, . . . ,8.
J

Since the left-hand sides of the first four Eqs.s113d–s116d
match those of the boundary conditionss74d–s77d at x=0,
substitution of the solutions110d–s112d into boundary condi-
tions s74d–s77d yields Ai =0, i =1, . . . ,4. Thus, it remains to
satisfy the boundary conditionss74d–s77d at x=1, by a suit-
able snontriviald choice of the remaining constantsAi =0,
i =5, . . . ,8. This requires vanishing of the 434 determinant

detsAd = 0, A = saijd, i, j = 5, . . . ,8, s121d

whereA is a matrix with elements

ai5 = Udji

dx
U

x=1
, i = 5, . . . ,8, s122d

ai6 = US − I/2

1 − I/4
ji + S1 −

I

4
DdFi

dx
DU

x=1
, i = 5, . . . ,8,

s123d

ai7 = uuiux=1, i = 5, . . . ,8, s124d

ABSENCE OF BULK ELECTROCONVECTIVE… PHYSICAL REVIEW E 71, 011506s2005d

011506-7



ai8 = Udui

dx
U

x=1
, i = 5, . . . ,8. s125d

Recall that the right-hand sides of Eqs.s122d–s125d coincide
with the left-hand sides of boundary conditionss74d–s77d,
respectively.

The problems s70d–s72d and s113d–s120d have been
solved numerically for various values of parameters
Pe,D ,a ,k. In order to check the procedure, the numerically
constructed fundamental solutionj5 was compared with the
asymptotic boundary layer solutions98d near the singular
endx=1, satisfying the initial conditions as provided by the
numerical solution at this point. This comparison illustrated
in Fig. 1.

Finally, in Fig. 2 we note that the determinant detsAd is
strictly negative and monotonically decreasing with the in-
crease of currentI towards its limiting value 4. Thus, detsAd
does not vanish for any finite value ofk. This, together with
the short-wave asymptotic analysis of Sec. IV valid for
k@1, implies the nonexistence of a nontrivial solution to

problems70d–s81d for any values ofk, which in turn implies
the nonexistence of bulk electroconvective instability.

This conclusion is confirmed by our calculated depen-
dence of the largest eigenvaluel fgrowth rate in Eqs.s47dg
on k, illustrated in Fig. 3.

VI. CONCLUDING REMARKS

Bulk electroconvective instability of quiescent concentra-
tion polarizationssteady-state conductiond through a perm-
selective solidsmetal electrode, ion exchange membraned
does not exist.sHow this combines with the appearance of
circulation in the loop model remains unclear and possibly
worth study in spite of the only vague relation between the
two systems.d Moreover, as will be shown in our forthcom-
ing study f28g, whenever instability does occur due to the
nonequilibrium space charge near the interfacesnonequilib-
rium electro-osmosisd, taking into account the electric force
term in the quasielectroneutral bulk has a stabilizing effect.
In any case, all previous reports regarding the existence of
instability resulted from either analytical inaccuracies or nu-
merical artifacts. Thus, the corresponding conclusion of the
only previous analytical studyf23g, in spite of its indisput-
able methodological value, was invalid due to lost boundary
conditions. In fact, our current study, in its analytical part, is
merely an orderly reproduction of the analysis by Bruinsma
and Alexander in terms of systematic matched asymptotic
expansions. Although it is difficult to assess the possible
source of error in the previous numerical studies by other
groupsswe may only speculate that some numerical difficul-
ties might have been related to the stiffness of the ordinary
differential equations of the spectral problemf25g, and slow
convergence of the Galerkin expansions, besides the un-
physical Dirichlet boundary conditions for the electric poten-
tial f20–22gd, we may confidently identify the source of error
in the previous numerical studies claiming instability by our
own groupf24,26g. This was rooted in too coarse finite dif-
ference grids we employedsuniform grids with 100 to 200
grid points, near the limit of our computer capabilities at that

FIG. 1. Comparison between the numerical solutionscontinuous
lined and the short-wave asymptotic onesdashed lined in the bound-
ary layer for different wave numberk: curve 1, k=3; curve 2,
k=5; curve 3,k=10.

FIG. 2. Dependence of detsAd on k for three values ofI / I lim

=0.9 scontinuous lined, 0.99 sdashed lined, and 0.999sdashed-dot
lined.

FIG. 3. Dependence of the largest eigenvaluel on k for differ-
ent currentsI: continuous line,I / I lim =0.8; dashed line,I / I lim =0.9;
dash-dot line,I / I lim =0.95.

LERMAN, RUBINSTEIN, AND ZALTZMAN PHYSICAL REVIEW E 71, 011506s2005d

011506-8



timed undetected by insufficient tests. Our recent reproduc-
tion of these computations with twice as fine a grid showed
the disappearance of the positive eigenvalue observed previ-
ously for currents sufficiently close to the limiting value. The
particularity of our current report lies in the systematic test-

ing of the numerical solution through its comparison with the
asymptotic one. In conclusion, we wish to reiterate that
Buchanan and Savillef27g are to be fully credited for their
just claim of the nonexistence of bulk electroconvective
instability.
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